
22 CROSSTALK The Journal of Defense Software Engineering August 2000

Nearly all modern devices contain embedded software.
Even a few years ago, the typical new car from General Motors
contained $675 of steel and nearly $2,500 of electronics,
including a dozen or so embedded microprocessors. Often, the
software in these embedded systems must execute in real-time
for the equipment to function correctly. Despite the need for
skilled real-time embedded software developers, there is little
attention paid to this area of software development in the
undergraduate computer science curriculum.

An introductory undergraduate course in real-time embed-
ded software development should acquaint students with the fun-
damental scientific issues of real-time computing and practical
skills in software development. While the theoretical issues can be
covered without a laboratory, real-time embedded programming
skills require the experiences that a laboratory provides. A major
problem is finding equipment suitable for teaching these skills.

Simulators are commonly used to give students experience
with real-time programming. Typically these simulators do not
provide many of the frustrating problems associated with physi-
cal systems. Hardware and software development are parallel
activities in many embedded systems projects. Gathering evi-
dence for the determination of whether a fault is in the hard-
ware or the software is an important skill for the embedded sys-
tems programmer. Lack of experience with real systems is one
reason cited by engineers who would exclude computer science
graduates from their development teams.

For more than a decade I have used a computer controlled
model railroad in my real-time embedded systems course. Some
advantages of using a model railroad in the laboratory are that:

• Model railroad equipment is readily available and priced
well below typical laboratory equipment.

• Model railroads provide a wealth of problems from
both the discrete and continuous real-time domains.

• The electronics are easily understood by most undergraduate
computer science students.

• Students are highly enthusiastic about writing software to
control a model train layout.
As a direct result of presentation and publication of previ-

ous work [1], [2], [3], [4], more than 50 organizations have
requested detailed specifications of the laboratory. All but three
were discouraged by the amount of effort (500-plus hours)
required to assemble the necessary interface electronics. With
the support of the Maytag and Rockwell Foundations, I am
implementing an affordable real-time embedded systems labora-
tory that other institutions can easily duplicate.

The Real-Time Systems Course
The computer science curriculum at the State University of

New York (SUNY) at Plattsburgh includes a specialized track,
Computer Controlled Systems. This track was developed for
students interested in the specification, design, and implemen-
tation of real-time embedded software. In addition to the typi-
cal courses in a computer science curriculum, this track includes
more courses in continuous mathematics, physics, and electron-
ics. The departments of computer science and industrial tech-
nology at the University of Northern Iowa (UNI) are designing
a joint computer controlled systems curriculum.

The real-time systems course serves as the curriculum’s cap-
stone course. To perform well in this course, students must inte-
grate knowledge from their previous work in computer science,
electronics, English, mathematics, and physics. Students are
exposed to the fundamental scientific issues in real-time com-
puting and gain practical skills of software development. A
major goal is to train software engineers capable of working as
members of an interdisciplinary development team. Many top-
ics are covered at a survey level. For example, students in the
course learn just enough of the basic concepts of control theory
to be able to communicate with a control engineer and to
implement a simple control algorithm. Feedback from employ-
ers in a wide range of domains, including avionics, communica-
tions, manufacturing, and medical instrumentation has been
extraordinarily positive.

Laboratory Assignments
The four credit-hour course has three 50-minute lectures

and a three-hour laboratory session each week. The early labora-
tory sessions are used to review (or learn) and practice with the
features of the implementation language that are important for
the completion of their project. These include data modeling,
encapsulation and reuse, concurrent programming, and excep-
tions. Later laboratory sessions are devoted to developing code
that will be directly applied to their projects, including polling
and interrupt-based device drivers, implementation of a whistle
class, and implementation of a turnout class

Turnouts are electromechanical devices that sometimes fail
to operate correctly. The software must detect and correct turn-
out failures. Students derive their code from state machines they
develop in one of the lecture sessions.

Course Project
Students are divided into teams of three or four students to

complete a substantial (12K–15K lines) project. Teams are free to

An introductory undergraduate course in real-time embedded software development should acquaint students
with the fundamental scientific issues of real-time computing and practical skills in software development. While
the theoretical issues can be covered without a laboratory, real-time embedded programming skills require the
experiences that a laboratory provides. A major problem is finding equipment suitable for teaching these skills.

Software Engineering Education: On the Right Track
By John W. McCormick

University of Northern Iowa

Software Engineering Education

August 2000 www.stsc.hill.af.mil 23

Software Engineering Education: On the

formulate their own projects. Minimum project requirements are:
• Running multiple trains.
• Having at least one train controlled by a human engineer.
• Experiencing no collisions.
• Detecting and recovering from hardware failures, such as

turnouts, sensors, lost cars, and devious professors.
Over the years, train races, train wars, and scheduling prob-

lems have been the most popular project themes. Deliverables
for the project have included:

• A system concept document.
• A detailed user’s manual.
• Object Modeling Template documents.

– Object model diagrams.
– Dynamic model diagrams.
– Functional model diagrams.
– Data dictionary.

• Compiled class specifications.
• Unit (class) test plans.

These deliverables are used as milestones throughout the
course to help ensure that students keep up with the demanding
schedule necessary to complete the project. One of my major
tasks is to work with teams on their systems concept document
to reduce overly optimistic proposals into ones that can be com-
pleted. Students are aware of the completion rates of past teams
(presented later in this paper) so they understand that they can
complete the project by the end of the semester.

Student teams do exhaustive module testing where behavior
of a particular object (a turnout or locomotive) is well under-
stood. Integration testing is bounded by the end of the semester.

The Laboratory
My first model railroad laboratory was constructed in 1983

at SUNY Plattsburgh. Construction of a new railroad layout at
the University of Northern Iowa is under way.

Railroad Hardware
The model railroads are HO scale.1 While smaller scales

would permit more equipment in the laboratory, they are more
expensive, more difficult to maintain, and less readily available.

To run multiple trains on their layouts, model railroaders tra-
ditionally divide the track into electrically isolated sections called
blocks. Many toggle and rotary switches are used to connect a
particular power supply (called a cab) to a group of track blocks
beneath each train. In our layout, the computer controls the volt-
age and polarity applied to each of the blocks. Our current UNI
layout design has 40 blocks. Today’s model railroad enthusiasts
often use more modern direct digital control of locomotives to
solve the problem of multiple train control. We have rejected this
approach as it provides fewer software development problems to
our students and less experience with analog electronics.

Turnouts are controlled by gear- and screw-driven switch
machines. The computer can determine and modify the state of
each turnout. Our current UNI layout design has 26 turnouts.

In order to do closed loop control, it is necessary to obtain
feedback on the process being controlled. For the model train this
feedback consists of the trains’ locations as a function of time.
This information is obtained from:

• Hall effect sensors installed on the track. These are triggered
by small magnets attached to the front of every locomotive
and to the rear of each caboose.

• A radio link installed in a box car that sends a pulse with
every wheel rotation.
Our UNI layout design has 55 Hall effect sensors. The radio

link allows us to determine a train’s position information to with-
in about 1 centimeter. From the data obtained from the link we
can also calculate the train’s speed. Currently there are two prob-
lems associated with the radio link. The wheels on the boxcar slip
on the track as the car moves, thus the calculated distance moved
by the train is less than the actual distance. This error increases
with time. This problem is a good problem as students can easily
correct for the slippage by using the positions obtained from the
fixed sensors. The second problem is a result of recycling radio
transmitters from very inexpensive toys. The transmitters broad-
cast over a large portion of the frequency spectrum, making it
impossible to use multiple transmitters at the same time. We are
working on a design to replace the radios with an infra-red link.

A final piece of railroad hardware is a hand-held control cab.
This is a small box with buttons, knobs, and toggle switches that
a human engineer can use to control a train. Typical student proj-
ects assign knobs for train throttles, buttons for whistles and
brakes, and toggle switches for train direction (forward or reverse)
and for setting the next turnout ahead of the train (left or right).

Computing Hardware
A number of different hardware configurations have been

used over the long history of this project. In our first laboratory,
students developed their control software on a Digital Equipment
Corporation PDP 11/24. They used a serial link to download
executable programs to a PDP 11/23 computer. In 1989 I
received a laboratory improvement grant from the National
Science Foundation (NSF) enabling me to replace the 11/24 with
a microVAX II and the 11/23 with an rtVAX (optimized for real-
time). The system now under design at UNI uses PCs for soft-
ware development. Two or three inexpensive networked micro-
computers will boot and execute the software students developed.

Interface Hardware
The interface hardware connects the control computers to

the railroad hardware. Figure 1 is a diagram showing the layers
in the system. One or more CPUs are connected to commercial-
ly available analog-to-digital converters (ADC), digital-to-analog
converters (DAC), TTL level digital I/O (DIO), and counter/
timers. The connection may be made through any of a number
of different buses such as ISA, EISA, PCI, GPIB, CAN, USB,
and even standard serial or parallel ports. We use custom hard-
ware to connect these devices to the railroad layout. In the past,
this interface layer was handbuilt on wire wrapped and soldered
prototyping boards. It took considerable effort to construct it.
With the support of the Maytag Foundation and Rockwell, we
are designing and manufacturing circuit boards that will make
this aspect of building the laboratory much easier for us and
other schools that wish to duplicate our efforts. The interface
hardware consists of three subsystems (block control, turnout
control, and train sensors) detailed in the following sections.

24 CROSSTALK The Journal of Defense Software Engineering August 2000

Block Control

The block control subsystem controls the voltage and polar-
ity applied to each track block in the railroad layout. Figure 2
shows a single track block circuit.

The two analog outputs are connected to the rails of a track
block to supply power to the train on that block. Each circuit has
four digital inputs and eight analog inputs. Three of the digital
inputs (cab select) are used to select which of the eight analog
inputs will be used to power the track block. The remaining digi-
tal input is used to select the polarity of the voltage applied to the
track. The analog inputs (cab voltages in Figure 2) may be sup-
plied by digital-to-analog converters or by programmable count-
er/timers. The latter uses pulse width modulation to control the
speed of a train. We expect that each of our block control boards
will contain six- or 12-block control circuits.

Turnout Control

This circuit controls a Tortoise brand switch machine. These
switch machines take three to five seconds to change the direction
of a turnout. There are four possible states for a turnout: left,
right, moving left, and moving right. Each circuit uses one output
bit to set the direction of the turnout. Rather than use two input
bits to determine the state of the switch machine we use the out-
put bit in combination with one input bit that reports whether
the turnout has reached the desired direction.

Train Sensors

This circuit connects the Hall effect sensors on the track to
a DIO board with interrupt capabilities. We place these sensors
on the boundaries between track blocks. When a locomotive is
detected, the software must power up the next block before the
wheels bridge the gap between blocks. This is a hard real-time
deadline in the system as the block power supply fuse will blow
if the software fails to power the next block in time .

Software

During the first six years that the real-time systems course
was offered, students developed their control code in C. As
shown in Figure 3, no team successfully implemented minimum
project requirements when the C language was used. To ease stu-
dent and teacher frustrations I made an increasing amount of my
solutions available to the teams. Figure 3 shows that even when I
provided nearly 60 percent of the project code, no team was suc-

cessful in implementing the minimum requirements.
Along with the new hardware provided by the NSF funding

was a collection of DEC compilers. Thinking that the low level of
tasking provided through semaphores was the major contributor
to the problem, I selected a language with a much higher level of
tasking abstractions—Ada. I expected a disaster the first year with
the new equipment and new language. As in a real-life embedded
systems project, I was building the hardware while my students
were writing the software. I finished the hardware with only four
weeks remaining in the semester. But to my amazement, nearly
50 percent of the student teams had their projects working before
the end of the semester. I had only supplied them with two sam-
ple device drivers. As shown in Figure 4, when I supplied some
additional software components (simple window packages not rel-
evant to the real-time aspect of the project), more than 75 percent
of my teams routinely completed their projects.

Why Ada succeeds where C fails.
The only difference between the years in which teams suc-

ceeded in implementing their projects and those in which no
team succeeded was the implementation language. The project
specification, design, and unit testing techniques did not vary.
While the new computing hardware the Ada teams used was
more modern (faster and fewer breakdowns), it provided no sig-
nificant implementation advantages. Upon reading the project
listings and team member diaries, I concluded that the major
advantages of Ada for these students were, in order of importance:

• Modeling of scalar objects.
– Strong typing.
– Range constraints.
– Enumeration types.

• Parameter modes that reflect the problem rather than the
mechanism.

• Named parameter association.
• Arrays whose indices do not have to begin at zero.

Figure 1. Hardware layers connecting the control computers to the model railroad

Figure 2. Track Block Control Circuit

Figure 3. C Language: Completion Rate (zero) and Amount of Code Supplied

Figure 4. Ada Language: Completion Rate and Amount of Code Supplied

100

80

60

40

20

0

1 2 3 4 5 6 7

YEAR

Groups Completing Project Code Supplied

Software Engineering Education

100
90
80
70
60
50
40
30
20
10
0

1 2 3 4 5 6

YEAR
Groups Completing Project Code Supplied

Cab Voltages

Cab Select

Polarity
Track

CPUs Buses

ISA
PCI

GPIB
CAN

USB, etc.

Devices

DAC
ADC
DIO

Counter/
Timer

Maytag
Rockwell
Custom
Interface
Boards

Railroad
Layout

Blocks
Turnouts
Sensors

Cabs

August 2000 www.stsc.hill.af.mil 25

• Representation clauses for device registers (record field
selection rather than bit masks).

• Higher level of abstraction for tasking (rendezvous rather
than semaphores).

• Exception handling.
• A compilation model that detects obsolete units.

I found my original hypothesis, that the major problem was
C’s low-level tasking mechanism, to be incorrect. While Ada’s
high level of abstraction for tasking was helpful to the students,
it was the accurate modeling of scalar quantities that contributed
the most to Ada’s success in this course. This is consistent with
studies done on the nature of wicked bugs in software [5] where
nearly 80 percent of programming errors in the C/C++ programs
studied were a result of problems with scalars.

Conclusions

The model railroad provides an exciting environment for
teaching a course in real-time embedded systems. With the sup-
port of the Maytag Foundation and Rockwell, we are develop-
ing the interface hardware to allow us and other schools to easi-
ly connect a variety of computers to a model railroad at mini-
mal cost. UNI will make the interface boards we design and
manufacture available to all. Contact me for details.u

References
1. McCormick, J.W. (1988). Using a Model Railroad to Teach

Digital Process Control. SIGCSE Bulletin, 20, 304-308.
2. McCormick, J.W. (1991). A Laboratory for Teaching the

Development of Real-Time Software Systems. SIGCSE Bulletin,
23, 260-264.

3. McCormick, J.W. (1992). A Model Railroad for Ada and
Software Engineering. Communications of the ACM, 35, 68-70.

4. McCormick, J.W., Kudrle, J., & Poulin, J.M. (1994) Ada,
Objects, and Model Trains. The Proceedings of the Eighth Annual
Software Engineering Education and Training Symposium,
Albuquerque, N.M., 8, 29-33.

5. Eisenstadt, M. (1997). My Hairiest Bug War Stories.
Communications of the ACM, 40, 30-37.

Note
1. HO scale [half + O (gauge)] is a scale of 3.5 millimeters to

1 foot used especially for model toys (as automobiles or trains).

About the Author

John McCormick is professor and head of the com-
puter science department at the University of
Northern Iowa. Previously, he was professor of com-
puter science at the State University of New York at
Plattsburgh, where he received the Chancellor’s
Award for Excellence in Teaching. He is the author of

two Ada-based textbooks for introductory computer science courses.
He received his bachelor’s degree from Pennsylvania State University
and his doctorate from the University of California at Los Angeles.

University of Northern Iowa, Computer Science Department
Cedar Falls, Iowa 50614-0507
Voice: 319-273-2618
Fax: 319-273-7123
E-mail: mccormick@cs.uni.edu

August 6-11
6th Annual International Conference on

Mobile Computing and Networking
www.research.telcordia.com/mobicom2000

August 7-8
IEEE Workshop on Memory Technology Design and Testing

http://pcgipseca.cee.hw.ac.uk/cec2000

August 17-19
Designing Interactive Systems (DIS)

September 10-12
Collaborative Virtual Environments (CVE)

September 10-14
Very Large Databases (VLD)

www.acm.org/events has information on DIS, CVE, and VLD.

September 18-19
The Internet Challenge—The Utility Response to a .Com World

www.tdworld.com/marketing/interchall.htm

September 26-28
2nd Computer Security & Information Assurance Conference

www.certconf.org

October 15-19
Object Oriented Programming Systems Languages and

Applications Conference (OOPSLA 2000)
www.acm.org/events

October 23-25
4th Symposium on Operating Systems Design and Implementation

www.usenix.org/events/osdi2000

October 30-31
3rd International Conference on Practical Aspects

of Knowledge Management (PAKM 2000)
www.do.isst.fhg.de/workflow/events/index_e.html

November 10
Infomation Outlook 2000 (Australian Computer Society)

www.acs.org.au/act/events/io2000/index.html

November 16-17
ACM Conference on Universal Usability

www.acm.org/sigchi/cuu

December 4-7
International Conference on Power System Technology

www.ee.uwa.edu.au/~aips/powercon

December 11-13
Global Development Network Conference

www.gdnet.org

April 29-May 3, 2001
Software Technology Conference 2001

www.stc-online.org

Coming Events

